Online-money exchangers

Worm 4 Space

Sunday, 15 May 2016

The WMAP

Wilkinson Microwave Anisotropy Probe :


From Wikipedia, the free encyclopedia
"WMAP" redirects here. WMAP may also refer to either radio station WXNC or WGSP-FM.
Wilkinson Microwave Anisotropy Probe
WMAP spacecraft.jpg
Artist's impression of WMAP
NamesMAP
Explorer 80
Mission typeCMBR Astronomy
OperatorNASA
COSPAR ID2001-027A
SATCAT №26859
Websitemap.gsfc.nasa.gov
Mission duration9 years, 1 month, 19 days
Spacecraft properties
ManufacturerNASA / NRAO
Launch mass835 kg (1,841 lb)[1]
Dry mass763 kg (1,682 lb)
Dimensions3.6 m × 5.1 m (12 ft × 17 ft)
Power419 W
Start of mission
Launch date19:46:46, June 30, 2001[2]
RocketDelta II 7425-10
Launch siteCape Canaveral SLC-17
End of mission
Disposalpassivated
DeactivatedOctober 28, 2010
Orbital parameters
Reference systemL2 point
RegimeLissajous
Main telescope
TypeGregorian
Diameter1.4 m × 1.6 m (4.6 ft × 5.2 ft)
Wavelengths23 GHz to 94 GHz
Instruments
WMAP collage.jpg
NASA collage of WMAP-related imagery (spacecraft, CMB spectrum and background image)

Explorers program
← HETERHESSI →
The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe(MAP) was a spacecraft operating from 2001 to 2010 which measured differences across the sky in the temperature of the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang.[3][4] Headed by ProfessorCharles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASAGoddard Space Flight Center and Princeton University.[5] The WMAP spacecraft was launched on June 30, 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorers program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson(1935–2002),[5] who had been a member of the mission's science team. After 9 years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by ESA in 2009.
WMAP's measurements played a key role in establishing the current Standard Model of Cosmology: the Lambda-CDM model. The WMAP data are very well fit by a universe that is dominated by dark energy in the form of a cosmological constant. Other cosmological data are also consistent, and together tightly constrain the Model. In the Lambda-CDM model of the universe, the age of the universe is 13.772±0.059 billion years. The WMAP mission's determination of the age of the universe to better than 1% precision was recognized by the Guinness Book of World Records.[6] The current expansion rate of the universe is (see Hubble constant) of 69.32±0.80 km·s−1·Mpc−1. The content of the universe presently consists of 4.628%±0.093% ordinary baryonic matter24.02%+0.88%
−0.87%
 Cold dark matter (CDM) that neither emits nor absorbs light; and 71.35%+0.95%
−0.96%
 of dark energy in the form of a cosmological constant that accelerates the expansion of the universe.[7] Less than 1% of the current contents of the universe is in neutrinos, but WMAP's measurements have found, for the first time in 2008, that the data prefers the existence of a cosmic neutrino background[8] with an effective number of neutrino species of 3.26±0.35. The contents point to a Euclidean flat geometry, with curvature (\Omega_{k}) of −0.0027+0.0039
−0.0038
. The WMAP measurements also support the cosmic inflationparadigm in several ways, including the flatness measurement.
The mission has won various awards: according to Science magazine, the WMAP was the Breakthrough of the Year for 2003.[9] This mission's results papers were first and second in the "Super Hot Papers in Science Since 2003" list.[10] Of the all-time most referenced papers in physics and astronomy in the INSPIRE-HEP database, only three have been published since 2000, and all three are WMAP publications. Bennett, Lyman A. Page, Jr., and David N. Spergel, the latter both of Princeton University, shared the 2010 Shaw Prize in astronomy for their work on WMAP.[11] Bennett and the WMAP science team were awarded the 2012 Gruber Prize in cosmology.
As of October 2010, the WMAP spacecraft is derelict in a heliocentric graveyard orbit after 9 years of operations.[12] All WMAP data are released to the public and have been subject to careful scrutiny. The final official data release was thenine-year release in 2012.[13][14]
Some aspects of the data are statistically unusual for the Standard Model of Cosmology. For example, the largest angular-scale measurement, the quadrupole moment, is somewhat smaller than the Model would predict, but this discrepancy is not highly significant.[15] A large cold spot and other features of the data are more statistically significant, and research continues into these.

Thursday, 12 May 2016

Big Bounce

The Big Bounce: The big bang may not have been the beginning of the universe, but merely the beginning of one of an infinite series of universes. Yeah, wrap your mind around that!Courtesy Pat Rawlings/SAICThe Big Bang and the new kid - the Big Bounce - are facing off and it looks as if the Big Bounce is pulling ahead in the polls. Big bounce theory, proposed by Martin Bojowald, is based on loop quantum gravity. And what, you may ask, is loop quantum gravity??
Well, since you asked so nicely...loop quantum gravity - or loop gravity - is a theory of spacetime that attempts to reconcile quantum mechanics and general relativity, according to Wikipedia. Basically, loop gravity tries to prove that gravity is quantized (or broken down into discrete steps). Read more here.
So now that you know a little bit about loop gravity, we can move on to the theory at hand. The big bounce says that the universe is like a bouncy ball. When the ball hits the ground, the universe is at its smallest; as the ball rises above the ground, the universe expands; as the ball moves back towards the ground, the universe begins to implode; when the ball starts to rise after hitting the ground, the universe expands again... You get the idea.
Where the big bounce differs from the big bang is that it resolves the issue of the big bang singularity. And again, you may ask, what in the world is the big bang singularity? Well, for those of you not in the know: the big bang singularity is the single point from which the entire universe is supposed to have sprung. It is, in fact, the major sticking point in the big bang theory; the calculations just can't account for such a singularity.
So for years, this singularity has been an assumption inherent in the theory. And you know what the problem with assuming is...
This is where the big bounce starts to look mighty good! The big bounce suggests that, as the universe implodes, the energy density of space increases to a point that gravity ceases to be attractive and repulses instead. When gravity becomes repulsive, the universe stops shrinking and begins to expand. Once the density moderates, gravity switches back to being attractive. This explains the explosive expansion seen and accounted for in the big bang theory.Big Bounce: The universe implodes until gravity becomes repulsive and a new universe explodes from the ashes, so to speak.Courtesy Relativity 4 Engineers
Now here is where the big bounce gets really cool! The idea that the universe implodes and explodes like a ball bouncing leads Bojowald to believe that there have been an infinite number of universes before ours and an infinite number of universes to come. Each universe expands, increasing in inertia (or disorder) until it implodes, thus clearing the slate for the new universe.

Sunday, 8 May 2016

NASA : Satellites to See Mercury Enter Spotlight on May 9


By NASA 
It happens only a little more than once a decade – and the next chance to see it is Monday, May 9. Throughout the U.S., sky watchers can watch Mercury pass between Earth and the sun in a rare astronomical event known as a planetary transit. Mercury will appear as a tiny black dot as it glides in front of the sun’s blazing disk over a period of seven and a half hours. Three NASA satellites will be providing images of the transit and one of them will have a near-live feed.



Although Mercury zooms around the sun every 88 days, Earth, the sun and Mercury rarely align. And because Mercury orbits in a plane that is tilted from Earth’s orbit, it usually moves above or below our line of sight to the sun. As a result, Mercury transits occur only about 13 times a century.
Transits provide a great opportunity to study the way planets and stars move in space – information that has been used throughout the ages to better understand the solar system and which still helps scientists today calibrate their instruments. Three of NASA's solar telescopes will watch the transit for just that reason.
The May 9 Mercury transit will occur between about 7:12 a.m. and 2:42 p.m. EDT. Mercury is too small to see without magnification, but it can be seen with a telescope or binoculars. These must be outfitted with a solar filter as you can't safely look at the sun directly.
“Astronomers get excited when any two things come close to each other in the heavens,” said Louis Mayo, program manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This is a big deal for us.”
Mercury transits have been key to helping astronomers throughout history: In 1631, astronomers first observed a Mercury transit. Those observations allowed astronomers to measure the apparent size of Mercury’s disk, as well as help them estimate the distance from Earth to the sun.
“Back in 1631, astronomers were only doing visual observations on very small telescopes by today’s standards,” said Mayo.
Since then, technological advancements have allowed us to study the sun and planetary transits in greater detail. In return, transits allow us to test our spacecraft and instruments.
Scientists for the Solar and Heliospheric Observatory, or SOHO (jointly operated by NASA and ESA, the European Space Agency), and NASA’sSolar Dynamics Observatory, or SDO, will work in tandem to study the May 9 transit. The Hinode solar mission will also observe the event. Hinode is a collaboration between the space agencies of Japan, the United States, the United Kingdom and Europe led by the Japan Aerospace Exploration Agency.

SOHO launched in December 1995 with 12 instruments to study the sun from the deep solar core all the way out to the sun's effects on the rest of the solar system. Two of these instruments — the Extreme ultraviolet Imaging Telescope and the Michelson Doppler Imager — will be brought back into full operation to take measurements during the transit after five years of quiescence.
For one thing, the SOHO will measure the sun’s rotation axis using images captured by the spacecraft.
“Instruments on board SDO and SOHO use different spectral lines, different wavelengths and they have slightly different optical properties to study solar oscillations,” said SOHO Project Scientist Joseph Gurman. “Transit measurements will help us better determine the solar rotation axis.”
Such data is another piece of a long line of observations, which together help us understand how the sun changes over hours, days, years and decades.
“It used to be hard to observe transits,” Gurman said. “If you were in a place that had bad weather, for example, you missed your chance and had to wait for the next one. These instruments help us make our observations, despite any earthly obstacles.”
SDO will be able to use the transit to help with instrument alignment. Because scientists know so precisely where Mercury should be in relationship to the sun, they can use it as a marker to fine tune exactly how their instruments should be pointed.
The transit can also be used to help calibrate space instruments. The utter darkness of the planet provides an opportunity to study effects on the observations of stray light within the instrument. The backside of Mercury should appear black as it moves across the face of the sun. But because instruments scatter some light, Mercury will look slightly illuminated.
“It’s like getting a cataract — you see stars or halos around bright lights as though you are looking through a misty windshield,” said SDO Project Scientist Dean Pesnell. “We have the same problem with our instruments.”
Scientists run software on the images to try and mitigate the effect and check whether it can remove all of the scattered light.
For those of us down on the ground, it is worth trying to find a local astronomy club with a solar telescope to see if you can witness this rare event.  Alternatively, a near-live feed of SDO images will be available at www.nasa.gov/transit.

Saturday, 7 May 2016

Evolutionary Theory (Part 1)

Evolution is change in the heritable traits of biological populations over successive generations. Evolutionary processes give rise to diversity at every level of biological organisation, including the levels of species, individual organisms, andmolecules.
All life on Earth shares a common ancestor known as the last universal ancestor, which lived approximately 3.5–3.8 billion years ago, although a study in 2015 found "remains of biotic life" from 4.1 billion years ago in ancient rocks inWestern Australia.(by wikipedia).
Brief History of Evolutionary Theory Before Darwin :


















Wednesday, 4 May 2016

The theory of every things (String Theory) part 2

M-Theory: The Mother of all SuperStrings
An introduction to M-Theory

Every decade or so, a stunning breakthrough in string theory sends shock waves racing through the theoretical physics community, generating a feverish outpouring of papers and activity. This time, the Internet lines are burning up as papers keep pouring into the Los Alamos National Laboratory’s computer bulletin board, the official clearing house for superstring papers. John Schwarz of Caltech, for example, has been speaking to conferences around the world proclaiming the “second superstring revolution.” Edward Witten of the Institute for Advanced Study in Prince- ton gave a spell-binding 3 hour lecture describing it. The after- shocks of the breakthrough are even shaking other disciplines, like mathematics. The director of the Institute, mathematician Phillip Griffiths, says, “The excitement I sense in the people in the field and the spin-offs into my own field of mathematics … have really been quite extraordinary. I feel I’ve been very privileged to witness this first hand..

Cumrun Vafa at Harvard has said, “I may be biased on this one, but I think it is perhaps the most important development not only in string theory, but also in theoretical physics at least in the past two decades.” What is triggering all this excitement is the discovery of something called “M-theory,” a theory which may explain the origin of strings. In one dazzling stroke, this new M-theory has solved a series of long-standing puzzling mysteries about string theory which have dogged it from the beginning, leaving many theoretical physicists (myself included!) gasping for breath. M-theory, moreover, may even force string theory to change its name. Although many features of M-theory are still unknown, it does not seem to be a theory purely of strings. Michael Duff of Texas A & M is already giving speeches with the title “The theory formerly known as strings!” String theorists are careful to point out that this does not prove the final correctness of the theory. Not by any means. That may make years or decades more. But it marks a most significant breakthrough that is already reshaping the entire field.


Parable of the Lion

Einstein once said, “Nature shows us only the tail of the lion. But I do not doubt that the lion belongs to it even though he cannot at once reveal himself because of his enormous size.” Einstein spent the last 30 years of his life searching for the “tail” that would lead him to the “lion,” the fabled unified field theory or the “theory of everything,” which would unite all the forces of the universe into a single equation. The four forces (gravity, electromagnetism, and the strong and weak nuclear forces) would be unified by an equation perhaps one inch long. Capturing the “lion” would be the greatest scientific achievement in all of physics, the crowning achievement of 2,000 years of scientific investigation, ever since the Greeks first asked themselves what the world was made of. But although Einstein was the first one to set off on this noble hunt and track the footprints left by the lion, he ultimately lost the trail and wandered off into the wilderness. Other giants of 20th century physics, like Werner Heisenberg and Wolfgang Pauli, also joined in the hunt. But all the easy ideas were tried and shown to be wrong. When Niels Bohr once heard a lecture by Pauli explaining his version of the unified field theory, Bohr stood up and said, “We in the back are all agreed that your theory is crazy. But what divides us is whether your theory is crazy enough!”

The trail leading to the unified field theory, in fact, is littered with the wreckage of failed expeditions and dreams. Today, however, physicists are following a different trail which might be “crazy enough” to lead to the lion. This new trail leads to superstring theory, which is the best (and in fact only) candidate for a theory of everything. Unlike its rivals, it has survived every blistering mathematical challenge ever hurled at it. Not surprisingly, the theory is a radical, “crazy” departure from the past, being based on tiny strings vibrating in 10 dimensional space-time. Moreover, the theory easily swallows up Einstein’s theory of gravity. Witten has said, “Unlike conventional quantum field theory, string theory requires gravity. I regard this fact as one of the greatest in- sights in science ever made.” But until recently, there has been a glaring weak spot: string theorists have been unable to probe all solutions of the model, failing miserably to examine what is called the “non-perturbative region,” which I will describe shortly. This is vitally important, since ultimately our universe (with its wonderfully diverse collection of galaxies, stars, planets, sub- atomic particles, and even people) may lie in this “non-perturbative region.” Until this region can be probed, we don’t know if string theory is a theory of everything — or a theory of nothing! That’s what today’s excitement is all about. For the first time, using a powerful tool called “duality,” physicists are now probing beyond just the tail, and finally seeing the outlines of a huge, unexpectedly beautiful lion at the other end. Not knowing what to call it, Witten has dubbed it “M-theory.” In one stroke, M-theory has solved many of the embarrassing features of the theory, such as why we have 5 superstring theories. Ultimately, it may solve the nagging question of where strings come from.

“Pea Brains” and the Mother of all Strings

Einstein once asked himself if God had any choice in making the universe. Perhaps not, so it was embarrassing for string theorists to have five different self-consistent strings, all of which can unite the two fundamental theories in physics, the theory of gravity and the quantum theory.

Each of these string theories looks completely different from the others. They are based on different symmetries, with exotic names like E(8)xE(8) and O(32).

Not only this, but superstrings are in some sense not unique: there are other non-string theories which contain “super- symmetry,” the key mathematical symmetry underlying superstrings. (Changing light into electrons and then into gravity is one of the rather astonishing tricks performed by supersymmetry, which is the symmetry which can exchange particles with half-integral spin, like electrons and quarks, with particles of integral spin, like photons, gravitons, and W-particles.

In 11 dimensions, in fact, there are alternate super theories based on membranes as well as point particles (called super- gravity). In lower dimensions, there is moreover a whole zoo of super theories based on membranes in different dimensions. (For example, point particles are 0-branes, strings are 1-branes, membranes are 2-branes, and so on.) For the p-dimensional case, some wag dubbed them p-branes (pronounced “pea brains”). But because p-branes are horribly difficult to work with, they were long considered just a historical curiosity, a trail that led to a dead-end. (Michael Duff, in fact, has collected a whole list of unflattering comments made by referees to his National Science Foundation grant concerning his work on p- branes. One of the more charitable comments from a referee was: “He has a skewed view of the relative importance of various concepts in modern theoretical physics.”) So that was the mystery. Why should supersymmetry allow for 5 superstrings and this peculiar, motley collection of p-branes? Now we realize that strings, supergravity, and p-branes are just different aspects of the same theory. M-theory (M for “membrane” or the “mother of all strings,” take your pick) unites the 5 superstrings into one theory and includes the p-branes as well. To see how this all fits together, let us update the famous parable of the blind wise men and the elephant. Think of the blind men on the trail of the lion. Hearing it race by, they chase after it and desperately grab onto its tail (a one-brane). Hanging onto the tail for dear life, they feel its one- dimensional form and loudly proclaim “It’s a string! It’s a string!”

But then one blind man goes beyond the tail and grabs onto the ear of the lion. Feeling a two-dimensional surface (a membrane), the blind man proclaims, “No, it’s really a two-brane!” Then another blind man is able to grab onto the leg of the lion. Sensing a three-dimensional solid, he shouts, “No, you’re both wrong. It’s really a three-brane!” Actually, they are all right. Just as the tail, ear, and leg are different parts of the same lion, the string and various p- branes appear to be different limits of the same theory: M- theory. Paul Townsend of Cambridge University, one of the architects of this idea, calls it “p-brane democracy,” i.e. all p- branes (including strings) are created equal. Schwarz puts a slightly different spin on this. He says, “we are in an Orwellian situation: all p-branes are equal, but some (namely strings) are more equal than others. The point is that they are the only ones on which we can base a perturbation theory.” To understand unfamiliar concepts such as duality, perturbation theory, non-perturbative solutions, it is instructive to see where these concepts first entered into physics.

Dualty

The key tool to understanding this breakthrough is something “duality.” Loosely speaking, two theories are “dual” to each other if they can be shown to be equivalent under a certain interchange. The simplest example of duality is reversing the role of electricity and magnetism in the equations discovered by James Clerk Maxwell of Cambridge University 130 years ago. These are the equations which govern light, TV, X-rays, radar, dynamos, motors, transformers, even the Internet and computers. The remarkable feature about these equations is that they remain the same if we interchange the magnetic B and electric fields E and also switch the electric charge e with the magnetic charge g of a magnetic “monopole”: E <–> B and e <–> g (In fact, the product eg is a constant.) This has important implications. Often, when a theory cannot be solved exactly, we use an approximation scheme. In first year calculus, for example, we recall that we can approximate certain functions by Taylor’s expansion. Similarly, since e^2 = 1/137 in certain units and is hence a small number, we can always approximate the theory by power expanding in e^2. So we add contributions of order e^2 + e^4 + e^6 etc. in solving for, say, the collision of two particles. Notice that each contribution is getting smaller and smaller, so we can in principle add them all up. This generalization of Taylor’s expansion is called “perturbation theory,” where we perturb the system with terms containing e^2. For example, in archery, perturbation theory is how we aim our arrows. With every motion of our arms, our bow gets closer and closer to aligning with the bull’s eye.) But now try expanding in g^2. This is much tougher; in fact, if we expand in g^2, which is large, then the sum g^2 + g^4 + g^6 etc. blows up and becomes meaningless. This is the reason why the “non-perturbative” region is so difficult to probe, since the theory simply blows up if we try to naively use perturbation theory for large coupling constant g. So at first it appears hopeless that we could ever penetrate into the non-perturbative region. (For example, if every motion of our arms got bigger and bigger, we would never be able to zero in and hit the target with the arrow.) But notice that because of duality, a theory of small e (which is easily solved) is identical to a theory of large g (which is difficult to solve). But since they are the same theory, we can use duality to solve for the non-perturbative region.

S, T, and U Dualty

The first inkling that duality might apply in string theory was discovered by K. Kikkawa and M. Yamasaki of Osaka Univ. in 1984. They showed that if you “curled up” one of the extra dimensions into a circle with radius R, the theory was the same if we curled up this dimension with radius 1/R. This is now called T- duality: R <–> 1/R When applied to various superstrings, one could reduce 5 of the string theories down to 3 (see figure). In 9 dimensions (with one dimension curled up) the Type IIa and IIb strings were identical, as were the E(8)xE(8) and O(32) strings.

Unfortunately, T duality was still a perturbative duality. The next breakthrough came when it was shown that there was a second class of dualities, called S duality, which provided a duality between the perturbative and non-perturbative regions of string theory. Another duality, called U duality, was even more powerful.

Then Nathan Seiberg and Witten brilliantly showed how another form of duality could solve for the non-perturbative region in four dimensional supersymmetric theories. However, what finally convinced many physicists of the power of this technique was the work of Paul Townsend and Edward Wit- ten. They caught everyone by surprise by showing that there was a duality between 10 dimensional Type IIa strings and 11 dimension- al supergravity! The non-perturbative region of Type IIa strings, which was previously a forbidden region, was revealed to be governed by 11 dimensional supergravity theory, with one dimension curled up. At this point, I remember that many physicists (myself included) were rubbing our eyes, not believing what we were seeing. I remember saying to myself, “But that’s impossible!”

All of a sudden, we realized that perhaps the real “home” of string theory was not 10 dimensions, but possibly 11, and that the theory wasn’t fundamentally a string theory at all! This revived tremendous interest in 11 dimensional theories and p- branes. Lurking in the 11th dimension was an entirely new theory which could reduce down to 11 dimensional supergravity as well as 10 dimensional string theory and p-brane theory.

Detractors of String Theories

To the critics, however, these mathematical developments still don’t answer the nagging question: how do you test it? Since string theory is really a theory of Creation, when all its beautiful symmetries were in their full glory, the only way to test it, the critics wail, is to re-create the Big Bang itself, which is impossible. Nobel Laureate Sheldon Glashow likes to ridicule superstring theory by comparing it with former Pres. Reagan’s Star Wars plan, i.e. they are both untestable, soak up resources, and both siphon off the best scientific brains.

Actually, most string theorists think these criticisms are silly. They believe that the critics have missed the point. The key point is this: if the theory can be solved non- perturbatively using pure mathematics, then it should reduce down at low energies to a theory of ordinary protons, electrons, atoms, and molecules, for which there is ample experimental data. If we could completely solve the theory, we should be able to extract its low energy spectrum, which should match the familiar particles we see today in the Standard Model. Thus, the problem is not building atom smashers l,000 light years in diameter; the real problem is raw brain power: of only we were clever enough, we could write down M-theory, solve it, and settle everything.

Evolving Backwards

So what would it take to actually solve the theory once and for all and end all the speculation and back-biting? There are several approaches. The first is the most direct: try to derive the Standard Model of particle interactions, with its bizarre collection of quarks, gluons, electrons, neutrinos, Higgs bosons, etc. etc. etc. (I must admit that although the Standard Model is the most successful physical theory ever proposed, it is also one of the ugliest.) This might be done by curling up 6 of the 10 dimensions, leaving us with a 4 dimensional theory that might resemble the Standard Model a bit. Then try to use duality and M- theory to probe its non-perturbative region, seeing if the symmetries break in the correct fashion, giving us the correct masses of the quarks and other particles in the Standard Model. Witten’s philosophy, however, is a bit different. He feels that the key to solving string theory is to understand the under- lying principle behind the theory.

Let me explain. Einstein’s theory of general relativity, for example, started from first principles. Einstein had the “happiest thought in his life” when he leaned back in his chair at the Bern patent office and realized that a person in a falling elevator would feel no gravity. Although physicists since Galileo knew this, Einstein was able to extract from this the Equivalence Principle. This deceptively simple statement (that the laws of physics are indistinguishable locally in an accelerating or a gravitating frame) led Einstein to introduce a new symmetry to physics, general co-ordinate transformations. This in turn gave birth to the action principle behind general relativity, the most beautiful and compelling theory of gravity. Only now are we trying to quantize the theory to make it compatible with the other forces. So the evolution of this theory can be summarized as: Principle -> Symmetry -> Action -> Quantum Theory According to Witten, we need to discover the analog of the Equivalence Principle for string theory. The fundamental problem has been that string theory has been evolving “backwards.” As Witten says, “string theory is 21st century physics which fell into the 20th century by accident.” We were never “meant” to see this theory until the next century.

Is the End in Sight?

Vafa recently added a strange twist to this when he introduced yet another mega-theory, this time a 12 dimensional theory called F-theory (F for “father”) which explains the self-duality of the IIb string. (Unfortunately, this 12 dimensional theory is rather strange: it has two time co-ordinates, not one, and actually violates 12 dimensional relativity. Imagine trying to live in a world with two times! It would put an episode of Twilight Zone to shame.) So is the final theory 10, 11, or 12 dimensional?

Schwarz, for one, feels that the final version of M-theory may not even have any fixed dimension. He feels that the true theory may be independent of any dimensionality of space-time, and that 11 dimensions only emerges once one tries to solve it. Townsend seems to agree, saying “the whole notion of dimensionality is an approximate one that only emerges in some semiclassical context.” So does this means that the end is in sight, that we will someday soon derive the Standard Model from first principles? I asked some of the leaders in this field to respond to this question. Although they are all enthusiastic supporters of this revolution, they are still cautious about predicting the future. Townsend believes that we are in a stage similar to the old quantum era of the Bohr atom, just before the full elucidation of quantum mechanics. He says, “We have some fruitful pictures and some rules analogous to the Bohr-Sommerfeld quantization rules, but it’s also clear that we don’t have a complete theory.”

Duff says, “Is M-theory merely a theory of supermembranes and super 5-branes requiring some (as yet unknown) non- perturbative quantization, or (as Witten believes) are the under- lying degrees of freedom of M-theory yet to be discovered? I am personally agnostic on this point.” Witten certainly believes we are on the right track, but we need a few more “revolutions” like this to finally solve the theory. “I think there are still a couple more superstring revolutions in our future, at least. If we can manage one more superstring revolution a decade, I think that we will do all right,” he says. Vafa says, “I hope this is the ‘light at the end of the tunnel’ but who knows how long the tunnel is!” Schwarz, moreover, has written about M-theory: “Whether it is based on something geometrical (like supermembranes) or some- thing completely different is still not known. In any case, finding it would be a landmark in human intellectual history.” Personally, I am optimistic. For the first time, we can see the outline of the lion, and it is magnificent. One day, we will hear it roar.                                                                     

Tuesday, 3 May 2016

String Theory Part 1


One of the goals of Physics is to find a single theory that unites all of the four forces of nature. These are; electromagnetism, gravity, and the strong and weak nuclear forces. The first two are familiar. Electromagnetism is the force that holds a fridge magnet to a refrigerator while gravity is trying to pull it off towards the earth.

The strong nuclear force is responsible for holding the central part of atoms (their nuclei) together, while the weak nuclear force is involved in the decay of these nuclei.

In the attempt to tie all the four forces together a lot of interesting ideas and new theories have been proposed. One of the most promising of these new theories is string theory. In attempting to unite gravity with the three other forces, string theory requires us to change the way we view the universe.

According to the theory all particles are actually tiny vibrating strings and each type of vibration corresponds to a different particle. The different particles are like the different notes that can be played by bowing a violin string. However, the strings of string theory almost certainly would not look like violin strings.


String theory also requires us to accept the existence of extra dimensions in the universe. We are familiar with the four usual dimensions: up-down, forwards-backwards, left-right and time, but string theory requires seven more dimensions!
A universe of eleven dimensions seems strange to us but many physicists think these extra dimensions are possible and are looking for ways to detect them.

The attempt to unify the 4 forces of nature is one of the most exciting areas of physics and I hope to be around if this is successful, whether it is string theory or some other candidate that is successful. On the other hand there is the possibility that no single, theory exists that can describe all the forces of nature in a neat and tidy way as we would like.

Whatever the outcome, scientists from all over the world will continue working together to discover what could be the ultimate theory of everything.


second part on my next post 
thanks to folow us

Monday, 2 May 2016

Big crunch

The Big Crunch is one possible scenario for the ultimate fate of the universe, in which the metric expansion of space eventually reverses and the universe recollapses, ultimately ending as a black hole singularity or causing a reformation of the universe starting with another big bang. Sudden singularities and crunch or rip singularities at late times occur only for hypothetical matter with implausible physical properties  .

Overview[edit]

If the universe's expansion speed does not exceed the escape velocity, then the mutual gravitational attraction of all its matter will eventually cause it to contract. If entropy continues to increase in the contracting phase (see Ergodic hypothesis), the contraction would appear very different from the time reversal of the expansion. While the early universe was highly uniform, a contracting universe would become increasingly clumped.[2] Eventually all matter would collapse into black holes, which would then coalesce producing a unified black hole or Big Crunch singularity.
The Hubble Constant measures the current state of expansion in the universe, and the strength of the gravitational force depends on the density and pressure of matter in the universe, or in other words, the critical density of the universe. If the density of the universe is greater than the critical density, then the strength of the gravitational force will stop the universe from expanding and the universe will collapse back on itself[2]—assuming that there is no repulsive force such as acosmological constant. Conversely, if the density of the universe is less than the critical density, the universe will continue to expand and the gravitational pull will not be enough to stop the universe from expanding. This scenario would result in the Big Freeze, where the universe cools as it expands and reaches a state of entropy.[3] One theory proposes that the universe could collapse to the state where it began and then initiate another Big Bang,[2] so in this way the universe would last forever, but would pass through phases of expansion (Big Bang) and contraction (Big Crunch).[4]
Recent experimental evidence (namely the observation of distant supernovae as standard candles, and the well-resolved mapping of the cosmic microwave background) has led to speculation that the expansion of the universe is not being slowed down by gravity but rather accelerating. However, since the nature of the dark energy that is postulated to drive the acceleration is unknown, it is still possible (though not observationally supported as of today) that it might eventually reverse its developmental path and cause a collapse